

Mirrors: Design Principles for Meta-level Facilities of
Object-Oriented Programming Languages

Gilad Bracha
Sun Microsystems

4140 Network Circle
Santa Clara, CA 95054

(408) 276-7025
gilad.bracha@sun.com

David Ungar
Sun Microsystems

2600 Casey Ave., MTV 29-XXX
Mountain View, CA 94043

(650) 336-2618

david.ungar@sun.com
ABSTRACT
We identify three design principles for reflection and
metaprogramming facilities in object oriented programming
languages. Encapsulation: meta-level facilities must encapsulate
their implementation. Stratification: meta-level facilities must be
separated from base-level functionality. Ontological
correspondence: the ontology of meta-level facilities should
correspond to the ontology of the language they manipulate.
Traditional/mainstream reflective architectures do not follow these
precepts. In contrast, reflective APIs built around the concept of
mirrors are characterized by adherence to these three principles.
Consequently, mirror-based architectures have significant
advantages with respect to distribution, deployment and general
purpose metaprogramming.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Object-oriented languages.

General Terms
Design, Languages.

Keywords
Reflection, Metaprogramming, Mirrors, Java, Self, Smalltalk.

1. INTRODUCTION
Object-oriented languages traditionally support meta-level opera-
tions such as reflection by reifying program elements such as
classes into objects that support reflective operations such as get-
Superclass or getMethods.

In a typical object oriented language with reflection, (e.g., Java,
C#, Smalltalk, CLOS) one might query an instance for its class, as
indicated in the pseudo-code below:

class Car {...}
Car myCar = new Car();
int numberOfDoors = myCar.numberOfDoors();
Class theCarsClass = myCar.getClass();
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
OOPSLA’04, Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-813-8/04/0010…$5.00.
Car anotherCar = theCarsClass.newInstance();

Class theCarsSuperclass = theCarsClass.getSuperclass();

Looking at the APIs of such a system, we expect to see something
like:

class Object {
 Class getClass();
...
}
class Class {
 Class getSuperclass();
// many other methods: getMethods(), getFields() etc.
}

The APIs above support reflection at the core of the system. Every
object has at least one reflective method, which ties it to Class and
(most likely) an entire reflective system. Base- and meta-level
operations coexist side-by-side. The same class object that con-
tains constructors and static attributes also responds to queries
about its name, superclass, and members. The same object that
exhibits behavior about the problem domain also exhibits behavior
about being a member of a class (getClass).

This paper argues that meta-level functionality should be imple-
mented separately from base-level functionality, using objects
known as mirrors. Such an API might look something like this:

class Object {
// no reflective methods
...
}
class Class {
// no reflective methods
...
}
interface Mirror {
String name();
...
}
class Reflection {
public static ObjectMirror reflect(Object o) {...}
}
interface ObjectMirror extends Mirror {
 ClassMirror getClass();
...
}
interface ClassMirror extends Mirror {
 ClassMirror getSuperclass();
...
}

In a mirror-based system, one might write our example as:

ObjectMirror theCarsMirror = Reflection.reflect(myCar);
ClassMirror theCarsClassMirror = theCarsMirror.getClass();
ClassMirror theCarsSuperclassMirror = theCarsClassMirror.getSu-
perclass();

At first glance, the change does not seem to have made much dif-
ference. However, the changed API has the effect of:

• divorcing the interface to meta-level operations from a partic-
ular implementation, and

• pulling meta-level operations out into a separable subsystem.

Each of these properties manifests an important design principle.
The former embodies the principle of encapsulation: meta-level
facilities must encapsulate their implementation.

The latter corresponds to the principle of stratification: meta-level
facilities must be separated from base-level functionality.

Another principle is structural correspondence: the structure of
meta-level facilities should correspond to the structure of the
language they manipulate. Any meta-level language architecture
that respects these principles is, by definition, a mirror-based sys-
tem. In addition, we advocate the principle of temporal correspon-
dence: meta-level APIs should be layered so as to distinguish
between static and dynamic properties of the language they
manipulate. These two principles can be coalesced into a broader
principle of ontological correspondence: the ontology of meta-
level facilities should correspond to the ontology of the language
they manipulate.

We will show that adherence to the aforementioned design princi-
ples yields significant advantages with respect to distributed devel-
opment and application deployment. We further argue that a well
designed mirror-based reflective API can serve as a general pur-
pose metaprogramming API.

Figure 1 illustrates a traditional reflective design and a mirror
based one. In a traditional API, classes straddle the boundary
between the base level and the meta level. In a mirror based
design, one moves from the base level to the meta levels by means
of a reflect operation. The levels are clearly separated. In fact, the
presence of classes at the base level is not strictly necessary.

The principle of encapsulation is a basic rule of software engineer-
ing, yet, as we will show, in many cases it has not been applied to
the design of the reflective architectures built-in to major program-
ming languages. The principle of stratification is well known in the
reflection community [Maes87], but again has not been consis-
tently adhered to in most programming languages. Structural cor-
respondence was elucidated by, e.g., [34]; while it is substantially
respected, we highlight violations and their implications for main-
stream languages. Temporal correspondence is related to the well

known distinction between compile-time, load-time and run-time
reflection. These phases are not always applicable to a given lan-
guage, but even when they are, only run-time reflection is usually
supported by the language.

This paper is the first systematic discussion of the design princi-
ples of mirror-based systems and the concomitant advantages. The
advantages of mirrors include:

• The ability to write metaprogramming applications that are
independent of a specific metaprogramming implementation
such as reflection.

With care, metaprogramming clients can interact with meta-
data sources that are local or remote without any change to
the client. Furthermore, a client can interact with multiple
sources of metadata at run time, and in fact interact with
metaobjects from different implementations simultaneously.

• The ability to obtain metadata from systems executing on
platforms that do not themselves include a full reflective
implementation. Examples:

- Small, memory-constrained devices or embedded sys-
tems

- Deployed applications where concerns of footprint,
security or bandwidth have discouraged or precluded the
deployment of built-in reflection support.

• The ability to dynamically add/remove reflection support
to/from a running computation.

• The ability to deploy non-reflective applications written in
reflective languages on platforms without a reflective imple-
mentation, reducing footprint or saving communication time.

Terminology. Reflective language architectures may be character-
ized in terms of their support for:

1. Introspection. The ability of a program to examine its own
structure.

2. Self-modification. The ability of a program to change its own
structure.

3. Execution of dynamically generated code. The ability to
execute program fragments that are not statically known. This
is a special case of 2.

4. Intercession. The ability to modify the semantics of the
underlying programming language from within the language
itself (the term intercession is sometimes used in a broader
sense in parts of the literature, but we adopt the narrower def-
inition of intercession given here, based on [18]).

Table 1 summarizes the support for these features in several reflec-
tive systems mentioned in this paper.

Figure 1

The term reflection refers to situations where a program manipu-
lates itself. We use the more general term metaprogramming to
describe situations where a program manipulates a (possibly dif-
ferent) program. The word program itself is often used to describe
two distinct notions: a description given in some programming
language and an executing computational process. We shall refer
to the former as code, and to the latter as computation.

Each of the next three sections focuses on one of the three princi-
ples identified above. In each section, we show concrete problems
that stem from violations of the principle being discussed, and how
they can be solved using mirrors. The following section discusses
the principle of encapsulation and its implications for distributed
execution. This leads to the need for stratification, discussed in
section 3 alongside issues of deployment. Section 4 then deals with
the principle of correspondence and the problems that arise when it
is neglected. Section 5 gives an overall discussion of the issues that
arise in the design of mirror-based systems. We then discuss
related work and present our conclusions.

2. ENCAPSULATION

It is a basic principle of software engineering that a module should
not rely on the particulars of another module’s implementation.
Unfortunately, clients of classical reflective APIs are dependent on
implementation details of the reflective system they use. We dem-
onstrate this point with a case study, followed by a more general
analysis.

2.1 Case Study: Distribution

Consider the following scenario. A programmer writes a class
browser, using reflection. At a later time, it becomes necessary to
browse classes on remote machines. We would like to reuse as
much of our browser code as possible, with as little adaptation as
possible.

This goal may seem controversial; readers should note that we are
not arguing for (or against) transparent distribution. That contro-
versy is far outside the scope of this paper. Rather, we argue that
mirrors are a good approach to the design of a reflective API that is
distribution-aware. We also claim that a mirror-based, distribution
aware reflective API can be designed so that it serves for the non-
distributed case as well.

With the scenario given above in mind, we contrast two APIs that
are based upon the same programming language and virtual
machine - Java core reflection and the Java Debugger Interface
(JDI).

We first present an overview of Java core reflection. Java core
reflection is the reflective API provided as part of the J2SE and
J2EE platforms. It is a traditional reflective API rather than a mir-
ror-based one. Next, we’ll see how core reflection deals with the
scenario described above. This is followed by a brief introduction
to JDI, a mirror-based API designed to support debugging of Java
programs. We then return to our example and show how JDI facili-
tates a satisfactory solution.

Table 1

Introspection
Self

Modification
Intercession

Java Core
Reflection

Yes No No

Smalltalk Yes Yes Very limited

CLOS Yes Yes Yes

JDI Yes Limited No

Strongtalk Yes Yes No

Self Yes Yes Very limited

Class

ObjectTraditional

Meta level Base level

Object

Class

 Object Mirror

Meta levelBase level

Class Mirror
reflect

reflect getClass getClassMirror

Reflection
Mirror

getSuperclass

getClass

getSuperclass

Based
Reflection

2.1.1 Java Core Reflection

In the Java programming language [16], reflective capabilities are
centered around class java.lang.Class (Class for short), extended
by the core reflection package java.lang.reflect. All classes, includ-
ing Class itself, are instances of Class.

In addition to Class, several other classes that support reflection
are defined, e.g., java.lang.reflect.Method, java.lang.reflect.Field,
java.lang.reflect.Constructor. The reflective API is defined using
classes, rather than interfaces. The significance of this is discussed
in section 2.2 below.

Classes have methods that support introspection. One can query a
class for its superclass, superinterfaces, fields, methods, construc-
tors and member classes. It is not possible to alter the structure or
code of an existing class using these facilities, as they do not sup-
port self-modification.

2.1.2 Applying Core Reflection to the Class Browser
Problem

It’s quite easy to write a browser that, given the name of a class,
will allow us to examine the class’ structure using core reflection.
However, once we try and use the same code on remote classes, we
encounter serious difficulties [26].

Since Java core reflection does not directly support distribution,
the browser will need to use an alternate implementation. How do
we avoid the need for a complete rewrite of the browser?

One possibility, following [20], is to design the distributed metap-
rogramming API to have the same class and method structure as
core reflection. Then the browser application can switch between
the local and distributed APIs by changing a single import state-
ment, from import java.lang.reflect.* to, say, import com.mycom-
pany.distributed.metaprogramming.*.

This approach is problematic. We must maintain two (slightly dif-
ferent) copies of the source code. We have two sets of binaries to
distribute and load. Consequently, at runtime, our browser code
has twice the memory footprint, and it is very hard for the two
loaded versions to interoperate. Furthermore, if our browser inter-
acts with the class loader API [19], it will need to use class Class
and hiding it using import will not be possible.

We may also wish to use the browser to observe source code out-
side of a running virtual machine. The problems mentioned above
are exacerbated; we have three versions of the source, three sets of
binaries etc.

Import statements fail to address the problem because they cannot
be used to decouple modules; rather, they couple them in a local-
ized fashion.

Another set of difficulties is specific to distributed programming.
Our application should be able to deal with network failures and
latency, and this will affect the logic of the application. We will
also need to specify and display the network locations of the
classes we are browsing.

Altogether, the core reflection API is unsuited to our purpose.

2.1.3 JDI

The Java Debug Interface (JDI) is the uppermost layer of the Java
Platform Debugger Architecture (JPDA) [29]. It is designed to
support remote debugging, but supports all the introspection capa-
bilities present in Java core reflection as well. JDI also supports
limited forms of self-modification.

JDI defines interfaces that describe all program entities that might
be of interest to a debugger. These include classes, interfaces,
objects, stack frames and more. All these interfaces are subtypes of
the interface com.sun.jdi.Mirror. Below we focus on those mirror
interfaces that are most important, and on those that involve
unique issues not seen in other languages or systems.

A mirror is always associated with a particular virtual machine, in
which the entity being mirrored exists. The interface
com.sun.jdi.VirtualMachine describes a mirror on a virtual machine
(VM) as a whole.

One can obtain the set of loaded classes and interfaces in the VM
being mirrored, the set of threads on the VM, information regard-
ing the capabilities of that VM, mirrors for specific classes or val-
ues on the VM etc.

Objects are mirrored by objects implementing the interface
com.sun.jdi.ObjectReference (this is the equivalent of the Object-
Mirror interface shown in the introduction). It is possible to read
and write the mirrored object's fields, invoke its methods, and to
get its class.

Remote mirrors on objects raise issues of distributed garbage col-
lection. By default, a mirrored object may be collected by the mir-
rored VM. In other words, object mirrors maintain a weak
reference to their mirrored object. It is possible to override this
default, and also to determine that an object has been collected.

Threads are mirrored by objects implementing the interface
com.sun.jdi.ThreadReference, which is itself a specialization of
ObjectReference, since threads are objects in the JVM. Operations
on threads include suspension and resumption, and operations on
the thread's call stack.

2.1.4 Scenario Revisited Using JDI

Using JDI, it is straightforward to write a class browser that can be
used to examine classes in separate processes on remote machines
or on the same virtual machine.

JDI was designed with distributed use in mind. Debugging the
same virtual machine using JDI is not recommended, because
debugging entails stopping threads on the virtual machine being
debugged. If JDI is running on that same VM, there is a substantial
risk of deadlock.

However, structural introspection does not usually require threads
to be paused. Furthermore, even if the usual JDI implementation
were not well-behaved, an alternate implementation can be derived
by wrapping core reflection within objects that implement the JDI
interfaces as needed to support structural introspection.

Concretely, one can construct different implementations of the
interface VirtualMachine (mirroring a particular VM) that support
reflection on either the current (local) process or remote processes.
A class browser would query an instance of VirtualMachine for

loaded classes (represented as a list of ClassType, the mirror inter-
face for classes). The browser code itself is oblivious to the differ-
ence between the different implementations of the mirror
interfaces.

While we have established that JDI can be used for non-distributed
reflection, we have not shown that it is as convenient to use as Java
core reflection. The main difficulty is the need to deal with poten-
tial exceptions that can arise only in distributed use. While this dif-
ficulty should not be ignored, we would argue that it is outweighed
by the benefits of having to learn a single API rather than two. Fur-
thermore, as discussed in section 3.1.3, experience with the Self
mirror APIs indicates that it is possible to employ the same API for
local and distributed reflection without excessive penalty.

2.2 Analysis
Our case study shows that Java core reflection does not support
distributed development tools, while JDI does. Partly, this is
because JDI deals with certain distribution-specific issues, such as
network failure and distributed memory management, while core
reflection does not.

These issues could be addressed by an alternate implementation of
core reflection that communicated with remote JVMs via proxies.
In the event of network failure (or unacceptable latency) opera-
tions might fail by throwing an exception.

The key point is that such an alternate implementation is not possi-
ble because the core reflection API is based on classes rather than
interfaces. Core reflection deliberately violates the principle of
encapsulation, by making its clients dependent upon specific
implementation types (classes). This dependency is enforced by
the type system and prevents clients from using alternate imple-
mentations of the core reflection API.

Of course, in a dynamically language one can write a proxy emu-
lating the reflective API without concern for quirks of the type sys-
tem. However, even in dynamically typed object oriented
languages, the implementation of an object may be subtly exposed,
as discussed below.

2.2.1 Encapsulating Class Identity

In most object-oriented languages, the getClass() method (or its
equivalent) exposes information about the implementation to cli-
ents. Applications may come to depend on this information, mak-
ing it very difficult to replace an object with another one that has
equivalent functionality but is an instance of a different class.

A simple example is:

if (aCar.getClass() == Car.class) {...}

this is very bad practice, yet not uncommon. This code will fail if
aCar is an instance of any alternate implementation of Car.

Now consider an example in a language where classes have appli-
cation specific state and code (as in Smalltalk or CLOS). Class Car
might have a method

numberOfCarsMadeIn(y) {...} // return the number of cars manufac-
tured in year y

typically used as follows:

n = aCar.getClass().numberOfCarsMadeIn(1999);

If aCar is a proxy for a remote car object, the standard implemen-
tation of getClass would return Proxy, causing the code to fail. It is
clear that we want getClass to return a proxy on the remote car
class. Doing so, however, poses a problem: how is reflective code
going to get hold of the real class of aCar, class Proxy? We might
define another method, getRealClass, but this merely perpetuates
the original problem of exposing class identity. The functionality
provided by getClass defeats the very reuse that has been pro-

pounded as a motivation for object-oriented programming.1

The solution is to factor the reflective functionality of getClass out
of the API of ordinary objects. This is exactly what mirrors do.

This factoring implies a functional decomposition rather than a
classic object-oriented one. The mirror implementation decides
how to mirror objects of a given kind, instead of leaving that deci-
sion to the implementation of the objects themselves.

In some scenarios, such as the class browser example, this is quite
natural. The browser knows where it is looking for classes -
locally, remotely, in a database etc., and can choose a suitable mir-
ror factory. In other cases, such as a debugger on a local process
that encounters a proxy object, it isn’t immediately clear which
mirror to choose. It may be a configuration preference set by the
user.

It follows that mirror factories may have to dispatch on the type of
the object. How do they do so if access to the identity of the class
is denied, as we recommend? The answer is that basic, local reflec-
tion inherently does not respect the encapsulation of other objects,
and can be used by reflective applications, including other mirror
factories, to identify classes if they so choose. One might even
define a “public mirror” factory that would allow classes to be reg-
istered indicating what mirror implementation to use when reflect-
ing upon their instances.

There are usually several means other than getClass by which the
identity of an instance’s class may be detected. A common exam-
ple is the use of constructs like instanceof or checked casts in con-
junction with class types (using these constructs with interface
types is harmless). Such usage, and any reliance on class identity,
should be avoided in application code.

Our conclusion is that separation of mirrors, at the meta-level, and
classes, at the base-level, is necessary to fully support encapsula-
tion. This separation is a manifestation of the principle of stratifi-
cation, discussed further in the next section.

3. STRATIFICATION
 A desirable engineering property of a feature is that it not impose
any costs when it is not used. Adherence to the principle of stratifi-
cation supports this desideratum by making it easy to eliminate

1 This problem may not be so important to those for whom object-
oriented programming’s modelling abilities are paramount, so per-
haps we have to admit that this paper comes at its subject from a
non-Scandinavian perspective. However it may be that the stratifi-
cation we propose is not dissonant with the separation of concepts
from phenomena.

reflection when it is not needed. This has important benefits in the
context of deployment, as discussed below.

3.1 Case Study: Deployment
When deploying an application, it is not always desirable to deploy
it together with all the reflective facilities available in the lan-
guage. The application may not require these reflective capabilities
at all, or it may require them infrequently. In such cases, it may be
advantageous to reduce the application footprint by avoiding or
delaying the deployment of reflective facilities. This is especially
true on small platforms such as mobile phones, PDAs, smart cards
or other embedded systems.

Our goal, then, is to avoid deploying reflection unless or until it is
actually needed by the application. We now review the Smalltalk-
80 reflective API, contrast it with Strongtalk, a mirror-based
Smalltalk system, and give an analysis of how such different archi-
tectures affect the deployment problem.

3.1.1 Smalltalk-80

Smalltalk-80 differs from most languages in that a program is not
defined declaratively. Instead, a computation is defined by a set of
objects. Classes capture shared structure among objects, but they
themselves are objects, not declarations. The only way to create
new classes, add code to classes etc. is to invoke methods upon
them. Smalltalk classes inherently support self-modification
because reflection is the sole mechanism available for constructing
and modifying them. The method class is defined for all objects,
so that one can obtain the class of any instance. Every object also
implements the inspect method, which opens an inspector on the
object.

Smalltalk classes are not used exclusively as meta-objects. Classes
typically include application specific methods and state. The most
common use of class methods is for instance creation. There is no
special syntax for instantiating a class, nor is there any notion of a
constructor in Smalltalk. Instead, class methods are used to create
new instances.

Because Smalltalk classes play both application specific and meta-
level roles in a program, it is generally difficult to remove reflec-
tion support from a Smalltalk application. We discuss this topic
further in section 3.1.3.

3.1.2 Strongtalk

Strongtalk differs from traditional Smalltalk systems in a number
of respects. The most relevant differences for the purposes of our
discussion are:

• It adopts the use of mirrors instead of the traditional reflective
architecture.

• It has an optional static type system [8],[6] that is based
exclusively on interfaces, supporting the principle of encap-
sulation.

• It is a mixin based system [7][9][5].

The Strongtalk mirror system supports introspection and self-mod-
ification. The class Mirror and its subclasses support reflection on
mixins, classes, types, methods, global variables, objects, the call

stack and individual stack frames (activation records). Invoking
Mirror>>on: on an object returns an appropriate mirror object.

Mixins serve as the basic unit of self-modification in the Strong-
talk mirror API. Mixins are well suited to this task, because they
are stateless (unlike Smalltalk classes), and can therefore be copied
freely. Modifications can be made to a copy of a mixin without any
effect on the ongoing computation. Only when all modifications
are complete is the modified version installed in one atomic opera-
tion. Several modified mixins can be installed simultaneously. This
batching of modifications improves performance, but it has a more
important advantage. A series of modifications may be consistent
as a whole, but if done piecemeal, may create inconsistent interme-
diate versions of the code, possibly leading to program failure.
This problem is avoided by the batching the modifications. See [5]
for more details.

The usual reflective functionality associated with Class is avail-
able in ClassMirror. Similarly, specialized mirror classes exist for
mixins, protocols (the rough equivalent of interfaces in Java) and
global variable declarations.

Whereas in an ordinary Smalltalk system one might ask a class to
remove one of its methods, in Strongtalk one would obtain a mir-
ror on the class using Mirror>>on: and then interact with the mirror,
as dictated by the principle of stratification.

To inspect an ordinary instance o, one does not use the inspect
method. Instead, one invokes the method Inspector>>launchOn: on
the object. This is crucial in decoupling the GUI from the rest of
the system.

To determine the class of an object for reflective purposes, rather
than invoke its class method, one invokes the method Reflec-
tion>>classOf: on the object.

This latter example deserves discussion. In Smalltalk, obtaining an
object's class is a routine non-reflective operation. Class methods
are used to construct new instances and for other application pur-
poses. For such application specific purposes, the class method
can and should be used. Unlike traditional Smalltalks, this method
can be overridden in Strongtalk. This allows objects to hide imple-
mentation details, including their class. For example, a proxy
object can hide the fact that it is an instance of a proxy class. See
section 2.2.1 for additional analysis.

3.1.3 Analysis

Mirrors make it easier to eliminate reflective infrastructure from
an application. To see why, we must consider the issues in both
dynamically and statically typed languages.

In dynamically typed languages that do not use mirrors, it can be
difficult to separate reflective facilities and the development envi-
ronment from the application. For example, the ability to add new
methods requires access to a source code compiler. If this capabil-
ity is placed in class Class, it becomes difficult to weed it out of an
application, as all applications rely on class Class. Similarly, in
Smalltalk Object>>inspect tends to bind object inspectors and a UI
framework into the application.

In general, if reflective capabilities are part of a class that has uses
other than reflection, it is hard to safely remove those reflective
capabilities from the system. To be sure that an application does

not use reflection one needs to resort to sophisticated and costly
type inference techniques [2].

Mirrors eliminate this problem by clearly separating reflective
functionality, and moving it into places that ordinary applications
will not access. It is then straightforward to establish that an appli-
cation does not require functionality from the reflective subsystem
or from the development environment. If the application makes no
reference to entry point(s) associated with reflection (e.g., classes
Mirror and/or Reflection in Strongtalk, the com.sun.jdi.Mirror inter-
face in JDI, or the reflect: method in Self [33][27]), reflection sup-
port can be removed

In statically typed languages that employ a nominal type system,
eliminating reflective functionality from an application prior to
deployment is considerably easier than in dynamically typed lan-
guages. However, if one does not use mirrors, but wishes to avoid
deploying the reflective subsystem unnecessarily, one must stati-
cally determine that reflection will not be used anywhere in the
application. If reflection is not deployed initially, it will not be pos-
sible to modify the existing representations of classes, methods
etc. to support it afterwards (since one would need self-modifica-
tion capabilities to do so). This is a real liability in the presence of
dynamic loading. Using mirrors, one can add or remove the reflec-
tive capacities at run time without special support, using dynamic
class loading and unloading. The ability to dynamically enable or
disable reflection support is useful from a security perspective as
well. Of course, reflection cannot be deployed dynamically with-
out some degree of support from the underlying implementation.

The capacity to reflect on a computation that does not contain a
reflective API is demonstrated in Klein, a metacyclic Self VM
being developed by the second author. Klein itself does not support
a reflective API. Klein is debugged using a Self GUI running on
the standard Self VM in a separate process. The GUI communi-
cates with the Klein VM using mirrors that communicate over
sockets. No changes were made to Self’s mirror API - only a new
implementation was needed. This experience supports our conten-
tion (in section 2.1) that a single mirror API can serve for both the
distributed and local cases.

Overall, we conclude that mirrors facilitate deployment. The
advantages are more pronounced for dynamically typed languages,
but mirrors are advantageous even when a static type system is
used.

4. ONTOLOGICAL CORRESPONDENCE

4.1 Temporal Correspondence
Reflection is traditionally defined with reference to a computation.
Naturally then, an underlying assumption of reflective APIs is that
reflected entities exist within an executing context. These APIs
therefore support operations such as instantiating a class, or query-
ing it for all its instances. While some reflective applications (e.g.,
profilers and debuggers) actually manipulate a computation, oth-
ers, such as compilers, class hierarchy browsers and pretty print-
ers, only manipulate the structure of a program (code).

It is desirable to run applications in this latter category on code that
is not embedded in a computation. A class browser might be used
to view a source database, for example. Conversely, some metap-

rogramming tools may assume the availability of source informa-
tion that may be unavailable at run-time. For example, Javadoc
[17] expects comments to be available.

4.1.1 Case Study: Browsing via a Source Database vs.
Browsing via Reflection

If one writes a class browser using Java core reflection, one cannot
easily retarget the application to browse classes described in a
source database. The situation is similar to what we encountered in
section 2.1.2. We cannot create an alternate implementation of the
API that produces instances of Class, java.lang.reflect.Method etc.
simply by reading source code without compiling and loading the
classes into a running JVM. This is yet another example of the
importance of the principle of encapsulation, but there are addi-
tional issues involved here.

Even if an alternate implementation of core reflection were possi-
ble, we would face difficulties. The reflection API allows methods
to be invoked, classes to be instantiated etc. These operations make
no sense when the browser is examining a source database.

We would fare no better using JDI, which was designed primarily
for debugging. It assumes that there has to be a running VM con-
taining threads, from which one may obtain stack frames, objects
and classes. We can see that adhering to the encapsulation princi-
ple is a necessary but insufficient condition to solve our problem.

Note that the JDI subset concerned with structural reflection on
classes is just as applicable to classes whose structure is extracted
from source code or from binary class files. If those elements of
JDI that do not depend on the presence of a computation were fac-
tored out into a separate API, an implementation that operated
upon a source database would be straightforward.

This leads to the following observation: mirroring code and mir-
roring computation should be separable modules of the mirror
API. This is a manifestation of the principle of temporal corre-
spondence. The distinction a language makes between code (com-
pile-time) and computation (run-time) should be manifest in its
metaprogramming APIs.

The notion of code is useful for restarting programs in a fresh state,
for proving program properties, and especially for transporting
programs between processes, as discussed below.

4.1.2 Distinguishing Code and Computation in Self:
Interchange of Programs and Data

The Self system strives to harness people’s intuitions about the real
world to help them program computers. Since the real world does
not distinguish code and computation—there is no compile/run
switch in the world—Self attempts to unify program and computa-
tion. A Self program is just a set of objects, and its mirrors reflect
that world view. So, one might argue that the principle of temporal
correspondence is irrelevant for Self.

However, Self features the transporter, a system designed to move
“programs” (sets of slots containing data or code) from one Self
world of objects to another [32]. In building the transporter, the
second author was forced to see that there was a need for a pro-
gram, something that could be described and moved into another

world that would provide it with the new functionality. The objects
added to the system to represent programs, (annotations, modules,
etc.) are indeed meta-level objects that truck in code instead of
computation. Despite our own best intentions, when it came time
to share programs, we found that this principle applied after all.

4.2 Structural Correspondence
Structural correspondence implies that every language construct is
mirrored. This principle has long been recognized in the reflection
community [23]. Nevertheless, in practice it is often violated. We
discuss some of the issues that arise below.

4.2.1 Reifying Both Code and Computation

Meta-object protocols ideally introduce a meta-object for every
object in the computation. However, in many languages, important
notions like modules, import and export statements, metadata,
types and comments exist only at compile time. Such constructs
are liable to be excluded by a MOP that only reifies elements of
the actual computation. Similarly, compile-time MOPs deal only
with compile-time constructs; the MOP is not present at run-time,
and cannot reify entities that exist only at run-time (see section 6.4
for further discussion of compile-time MOPs).

4.2.2 Mirroring Method Bodies

In most languages, constructs below the method level, such as
statements and expressions, do not have corresponding meta-
objects. This is also the case in the mirror systems we have dis-
cussed. At the VM level, byte codes are often available, and these
can often be mapped back into source code. This strategy is typi-
cally used by tools such as debuggers.

True structural correspondence would imply that a higher level
representation of method bodies should be available. This would
be useful, so that tools that manipulate source code, such as com-
pilers, could use a standardized representation.

Because source code (or even byte code) may not always be avail-
able, many implementors have shied away from providing such
facilities. However, it is often possible to provide such functional-
ity conditionally (i.e., if it is available) and/or on-demand. For
example, in JDI, clients can query a VirtualMachine about what
kinds of operations it supports. This enables JDI to define an API
to access a method’s byte code, but allows for implementations
that do not retain byte code as well.

4.2.3 Which Language to Reflect?

Programming languages that support reflection are often imple-
mented on top of a virtual machine (e.g., Java and the JVM, C#
and the CLR, etc.). One must not confuse the metaprogramming
API for the language of the underlying virtual machine (the VML)
with that of the high level language (HLL) running on top of it.
When designing a metaprogramming API, it is important to be
clear what the base-level language is. This is true regardless of
whether the API in question is mirror-based.

Reflection has to be supported by the VM at some basic level, so a

reflective API to the VML is a given. High level languages imple-
mented on top of a virtual machine should ideally include their
own reflection API. Maintaining a distinct reflective API for the
HLL is valuable for a number of reasons.

The VML reflective API may not maintain the invariants of the
HLL, thereby introducing potential security and correctness prob-
lems.

There is a risk of discrepancies between the VML and the HLL.
Such discrepancies often arise when implementing high level con-
structs that are not directly supported by the VM.

A prominent example are nested classes in the Java programming
language. Implementing nested classes requires the generation of
synthetic classes, interfaces, methods and fields that are not
present in the original source code. In some cases, constructors
may require additional parameters.

Such features should be hidden from HLL programs because they
expose the details of a specific translation scheme between the
HLL and the VML. Such a translation scheme is an implementa-
tion detail that HLL programs must never rely on. In particular,
these details should not leak through the reflective API.

As a counter-example, consider java.lang.Class.getMethods, which
returns the methods declared by a class. All the methods declared
at the VM level are returned, regardless of whether they are syn-
thetic. This exposes the translation strategy of the Java compiler to
clients of reflection.

If multiple source languages are implemented on a given virtual
machine, the risk of discrepancies among the virtual machine lan-
guage and the various source languages increases. A common
example is method overloading, typically supported by the HLL
compiler but not by the underlying VM. If two languages have dif-
ferent overload resolution schemes, a single reflective API will
support only one of them correctly.

Even if the HLL and VML are in complete agreement, it is likely
that discrepancies will arise over time as new HLL features are
added and implemented by the HLL front end without VM sup-
port. Again, both nested classes and generics in the Java program-
ming language are examples of this.

To avoid such difficulties, the Strongtalk mirror API is subdivided
into high level mirrors and low-level mirrors. High-level mirrors
reflect Smalltalk, and low level mirrors reflect the underlying
structures in the virtual machine. This distinction is not present in
any other reflective API that we are aware of.

High level mirrors are defined by the Mirror class hierarchy. High
level mirrors support Smalltalk level semantics. Low level mirrors
are defined by the class VMMirror and its subclasses. VM mirrors
manifest representational differences between different kinds of
objects (e.g., integers, arrays, classes, mixins, regular objects) that
are hidden at the language level. One can ask a ClassVMMirror for
the physical size of its instances, or the size of their header, for
example. The low level mirror API is inherently sensitive to the
design of the underlying virtual machine language and implemen-
tation.

We conclude that: there should be distinct reflective APIs for
each language in a system, in particular for the underlying virtual
machine language and for each high level language running on top

of the virtual machine. This is an instance of the principle of struc-
tural correspondence.

5. ISSUES IN THE DESIGN OF MIRROR-
BASED SYSTEMS

5.1 Classes vs. Prototypes

5.1.1 Self

Mirrors were first introduced in the Self programming lan-
guage[33]. Self uses prototypes instead of classes, but unlike
Actors[3], it unifies access to state and behavior. Lacking direct
references to methods, the Self language could not support tradi-
tional, integrated reflective operations. Self’s omission of direct
method references stems from its unification of method invocation
with variable access and assignment as shown in figure 2. Conse-
quently, there is no way in Self to refer to a method, as opposed to
the result of its execution!

The designers of Self felt that method references were not object
oriented, because a method does the same thing whenever it is
invoked, unlike a message sent to an object where the object gets
to decide. However, when it came time to build a programming
environment, it became clear that some way would be needed to
refer to methods.

The solution was the “mirror.” Named originally both as a pun on
“reflection” and also to suggest “smoke and mirrors”, the original
notion of mirror was an object that would appear to be a dictionary
whose entries were named by the slot names of the original object
(the “reflectee”) and whose entries contained mirrors on the con-
tents of the slots of the reflectee, thus satisfying the principle of
stratification. Later, “slot objects” were introduced. When asked
for the dictionary entry for a given slot, a mirror returns an object
that represents the slot. It contains the slot name, attributes such as
whether it is a parent slot, and a mirror on the contents of the slot.
Self’s mirrors support introspection and self-modification.

Here are some examples:

(reflect: anObject) size — returns the number of slots in an object

(reflect: anObject) do: [|:s| s printLine] — prints out the slots in an
object, one per line

(reflect: anObject) at: ‘newSlotName’ Put: (reflect: 17)— adds a slot
containing 17 to the object

((reflect: anObject) at: ‘fred’) setParent: true— turns the slot named
“fred” into a parent slot

As Self codesigner Randall B. Smith has observed, the down side
of mirrors is a decrease in uniformity: sometimes it is not clear

whether a new method should accept a mirror or a base object as
its argument. Worse, some functionality, such as printing, does not
seem to cleanly fall into either base- or meta- levels. On the whole,
though, the designers of Self are quite pleased with how their strat-
ified mirror design has worked out.

In this paper, we argue that mainstream class-based languages ben-
efit from a model of metaprogramming that follows three princi-
ples. However, if one accepts the premise in this paper, then one
must realize that there is a fundamental problem with class-based

languages as we know them.1 Every single class-based language
we know of displays the problems associated with instanceOf and
class identity tests as described elsewhere in this paper. We believe
that the class-based mindset itself drags along the implication that
the class of an object is a reasonable thing for client code to know.
But, this very knowledge inhibits reuse. On the other hand, exist-
ing prototype-based languages, even Self, do not seem to allow for
sufficient latitude for the programmer to express his or her inten-
tions at the linguistic level. Consequently, we agree with Ole Lehr-
mann Madsen’s view [21] that the next important OOPL will bring
classes and prototypes together. In other words, we know some of
its characteristics but lack a concrete example.

5.2 The Role of Types
We distinguish between

1. Structural type systems.

2. Nominal type systems based exclusively on interfaces.

3. Optional type systems.

4. Dynamically typed systems.

All of these approaches support the principle of encapsulation, but
only a mandatory version of (2) can reliably help us identify when
the reflective API is not actually being used, thereby supporting
our goals for deployment.

A mandatory nominal type system that avoids implementation
types can shield designers from some of design errors that affect
current mainstream reflective architectures. We believe that such a
system is a good choice for languages that seek to employ manda-
tory typechecking. However, many considerations impact the
design of a language’s type system, and discussing them is well
beyond the scope of this paper.

Fortunately, careful mirror-based design means that one need not
rely on the type system to separate out the reflective API. The ben-
efits of a mirror-based API can be had almost independently of the

A Self objects with two slots, x and y. Sending y to this object returns 17, sending x to it
returns the product of rho and cos theta. There is no way in the base Self language to obtain a
reference to this method.

A mirror on the object above. Sending the size message returns 2, sending “at: ‘y’” returns a
mirror on 17, and sending “at: ‘x’” returns a mirror on the method in the x slot.

 Figure 2

1 Of course, there may be other problems with prototype-based
languages as we know them.

type system used, if any. The key constraint on the type system is
that it avoid relying exclusively on implementation types.

5.3 Designing Languages in tandem with
Reflection

By definition, a reflective API reifies the ontology of a program-
ming language. The principle of structural correspondence
demands that each construct in the language map to an interface in
the API. Examining JDI, we see a large framework that has to reify
a complex language ontology (primitive types, classes, interfaces,
access control, packages, methods, constructors, initializers etc.).
A language’s complexity becomes manifest in its reflective API,
and the size of the API is directly related to the size of the lan-
guage. This adds to the attraction of simple languages, with a small
number of very general constructs, as opposed to complex lan-
guages with a large number of highly specialized constructs.

Given that reflection is a necessity in modern applications, it
seems plausible to suggest that languages be designed in tandem
with their reflective APIs. If the reflective API seems too large and
complex, language designers can take this as an indication that the
language itself is too large and complex.

5.4 Metadata

The idea of language support for user defined metadata has gar-
nered much attention recently, with its introduction into C#. Such
support has now been added to the Java programming language as
well [30]. Metadata in this context consists of user specified data
attached to elements of the program source, such as class or
method declarations. Design of such metadata facilities raises
many of the same issues discussed in this paper - specifically, the
ability to examine metadata in distributed settings or when the
source is not loaded.

Self’s mirrors provide a cozy home for its metadata. Originally,
Self had no user-specifiable metadata. Later on in the project, it
gained the capability for user-level code to associate an arbitrary
object (called an annotation) with any object or slot. The Self vir-
tual machine implemented this facility with extra space in its
maps, and exposed the annotations through mirrors. Self-level
methods in mirrors implemented all of the annotation functional-
ity, such as get- and set- annotations for objects and slots. By pro-
viding a first-class place for meta-level operations, the designer
who chooses mirrors prepares for the future expansion of reflec-
tive capabilities.

5.5 Disadvantages of Mirrors

Mirror-based architectures reify the distinction between base- and
meta-level operations. When this distinction is either awkward or
ambiguous, the mirrors can just get in the way. For instance, con-
sider a user-interface object that allows a programmer to inspect
the slots of an object. Without mirrors, one might expect a proto-
type such as: SlotExaminer newOn: anObject. But in a system with
mirrors, one is faced with an awkward choice: if the message takes
an object as argument, the slot examiner cannot be used with a
proxy object. But if the message takes a mirror as argument, each
invocation of the method must suffer the verbosity of the mirror

creation operation. In a non-uniform system, each option has
drawbacks.

The issue of what protocol to use for an object inspector may seem
moot to a true believer in reflection—after all the inspector is
reflecting, so send it a mirror and hang the (verbosity) cost—but
sometimes the line between base- and meta- level can blur so far
there is no distinction left at all. Consider the operation of printing
an object. What most of us consider to be a reasonable printed rep-
resentation does not respect any separation of base and meta. For
example, a list object might print as “A List containing (a Car, a
Truck).” The first part of the string uses the name of the class of
the object (meta-level), but the last part uses the list iteration code
(base-level). A mirror-based architecture adds complexity to print-
ing code by introducing explicit level shifts into the code. Where
the distinction between base- and meta-level fails to model the
problem to be solved, mirrors become a nuisance instead of a help.

5.6 Future Work: The Ultimate Mirror
System

This paper envisages a reflection/metaprogramming API that:

• Supports introspection, self-modification and intercession on
both code and computation.

• Includes distinct layers for mirroring the virtual machine lan-
guage and the high level language(s).

• Is clearly separable from the underlying base language,
allowing applications that do not use the reflection/meta-pro-
gramming API to be deployed independently of it.

• Does not assume a particular implementation; rather it trans-
parently allows for local or remote use and demonstrably
allows for multiple implementations.

Such a system should support an IDE remotely manipulating a
small footprint VM that does not include a full implementation of
reflection, such as one found on a PDA or mobile phone.

None of the reflective systems constructed to date fully meets this
goal, as one can see in table 1, which highlights lack of support for
self modification and/or intercession, and table 2, which summa-
rizes other key properties of the mirror based systems we have dis-
cussed in this paper.

In Strongtalk, the API was designed with all of these goals in mind
except for compile-time metaprogramming, mirroring below the
method level, and intercession. However, development of Strong-
talk ceased before the mirror API was fully mature. As a result, no
distributed implementation was ever constructed to validate it.

In contrast, JDI successfully implements distributed metaprogram-
ming in production, but it assumes it is operating on a runtime rep-
resentation, and makes no separation between the virtual machine
and the high level languages. Though the JDI interface is designed
to fully support self-modification, actual implementations are
more restrictive, and intercession support is completely absent.

Self still lacks complete support for VM level language reflection
facilities, and does not fully support either fine-grain reflection
below the method level or mirror-based intercession. Other than
that, it appears to satisfy our criteria.

The question of how to support intercession in a mirror based set-

ting is an intriguing one. Rather than speculate we leave it for
future research.

6. RELATED WORK
6.1 Pluggable Reflection

The closest work to this paper is [20] in which Lorenz and Vlis-
sides address deficiencies of mainstream reflective systems. The
main focus is on the violation of the encapsulation principle.
Rather than consider alternate designs for reflection and lan-
guages, they concentrate on a pragmatic methodology and tools
that ameliorate the problem for users of existing systems. Using
patterns and component techniques, they work on reducing the
coupling between reflection and its clients. They also note the
problem of temporal correspondence (though the terminology dif-
fers), but without offering a solution. They do not directly address
the other design principles discussed here.

6.2 Declarative Metaprogramming

Declarative metaprogramming [35] makes use of declarative lan-
guages for metaprogramming. In particular, logic metaprogram-
ming [36] uses a logic programming language to define
metaprograms. The language being manipulated by the metapro-
gram need not be a declarative language [37]. When metaprogram-
ming occurs across languages, the principle of stratification is
naturally obeyed. The use of a declarative language avoids the sub-
tle problems of class identity mentioned in section 2.2.1. It is pos-
sible to construct a declarative metaprogramming system that
obeys the principles of encapsulation and correspondence, but nei-
ther property can be taken for granted.

6.3 Lisp

Historically, reflection was pioneered in Lisp, and the standard
work on the semantics of reflection was done in the context of
Lisp[11]. Object-oriented Lisp systems, as exemplified by CLOS,
are the most germane to this paper.

Reflection in CLOS is supported via a Meta-Object Protocol
(MOP) [18] that is part of the language definition. A MOP is a
declarative model of the language ontology. The MOP is focused
on support for reflection, including introspection, self-modifica-
tion and, most notably, a rich notion of intercession.

CLOS meta-objects include (among others) classes. As in Small-
talk, classes are used both for application purposes, such as creat-
ing new instances (via the method make-instance) and maintaining
shared state (via :class variables), and may have application spe-
cific methods as well. This contradicts the principle of stratifica-
tion. The MOP largely upholds structural correspondence, but it
only reifies entities that have run-time semantics.

6.4 Compile-time MOPs
Compile-time MOPs ([12], [13], [31]) have two key properties:

1. They deal with code: they only define meta-objects that reify
entities that exist at compile-time.

2. They allow code to access the MOP while the code itself is
being compiled. This lets the code influence how it will be
compiled via compile-time computation, supporting a form of
intercession. Code can even manipulate its own structure
using the MOP, supporting generative programming ([14],
[28]).

Item (1) implies that the meta-objects provided by a compile-time
MOP are necessary but not sufficient to support the principle of
correspondence. On the other hand, the ability to use these meta-
objects in compile-time computation is not required by any of the
design principles discussed in this paper. Further discussion of (2)
is beyond the scope of this paper.

6.5 APT
APT (Annotation Processing Tool) [4] is a compile-time metapro-
gramming API designed to support the processing of metadata.
The API is mirror based: it uses interfaces exclusively, and sup-
ports encapsulation and stratification. APT explicitly deals only
with compile-time properties of the source language (Java), in line
with the principle of correspondence. However, the API does not
provide access to constructs below the method level. Unfortu-
nately, APT is not integrated with a run-time reflection API.

6.6 C#/.Net
The C# reflection API supports introspection, as well as the
dynamic creation and evaluation of programs, but not self-modifi-
cation or intercession.

The API is mostly based on abstract classes. This allows alternate

Table 2

Compile time Run time VML HLL
Reflects
below

Method lvl

Strongtalk No Yes Yes Yes No

Self Yes Yes No Yes No

JDI No Yes Mixed Mixed Yes

APT Yes No No Yes No

implementations to be derived by subclassing. However, the prin-
ciple of encapsulation is not uniformly adhered to. In particular,
the part of the API that supports the dynamic construction of pro-
grams does not use abstract classes or interfaces. It also appears
that many of the abstract classes are not fully abstract, and thereby
fix certain properties (especially representations) for all implemen-
tations. Despite these flaws, there appears to be considerable scope
for alternate implementations, at least for introspection.

There is no clear-cut separation between the base-level and the
meta-level. Classes directly support the reflective operations and
the GetType operation is embedded in the root of the type hierar-
chy, object and cannot be overridden. Class types are also exposed
via checked casts, the typeOf operator (the equivalent of Java’s
instanceOf) and hardwired notions of type identity.

While the API primarily reflects the .Net virtual machine, rather
than the C# language itself, there is support for constructs like enu-
merations which appear to be in the domain of high-level lan-
guages. There is no distinct layer of the API dedicated to the high
level language.

There does not appear to be a separation between code and compu-
tation. For example, methods support an Invoke operation that
could not be supported when examining classes in a source code
database.

6.7 Beta
The Beta [22] metaprogramming system Yggdrasil [24] automati-
cally produces class hierarchies based on an abstract syntax given
by a grammar, in close correspondence with the principle of struc-
tural correspondence. The generated hierarchies and associated
tools support metaprogramming but not reflection. MetaBeta [10]
provides support for run-time reflection including intercession.
The distinction between Yggdrasil and MetaBeta is in line with the
principle of temporal correspondence, but unfortunately the two
APIs are unrelated.

6.8 Oberon
The reflective architecture of Oberon-2 [25] factors out reflection
into a separate module, not unlike mirror-based systems. Reflec-
tive information is accessed through riders, iterator objects that
support the traversal of the reified program. Riders are used for
introspection of the program declarations and call stack and for
dynamic execution. The system does not support self-modification
or intercession.

Unlike mirrors, riders do not correspond directly to individual enti-
ties in a program. Instead, they represent sequences of similar enti-
ties. Riders correspond less directly to the language ontology, but
appear to support stratification.

6.9 Firewall
Allen Wirfs-Brock et al. [34] discuss the properties of a declarative
model for Smalltalk programs. The “abstract object model” they
propose appears to be a mirror system for Smalltalk, implemented
as the Firewall prototype for ParcPlace (now Cincom) Smalltalk.
They discuss the advantages for distributed development and

deployment. However, their discussion is Smalltalk specific and
relies critically on the more general notion of a declarative pro-
gram model for Smalltalk. They do not discuss the separation of
high-level mirrors and low level ones, the interactions with static
typing and multithreading or the relation with prototypes.

As Wirfs-Brock implies, a declarative language definition is a
good basis for a clean mirror system. A key part of such a defini-
tion is the language's abstract syntax.

6.10 Aspect-Oriented Programming
Aspect-Oriented programming (AOP) has its roots in reflection
and meta-object protocols in particular. One view of AOP is that it
identifies a subset of reflective operations that are frequently use-
ful for application development, and seeks to represent this subset
at the base level via dedicated constructs. As such, AOP is deeply
concerned with the distinction between meta-level and base-level
operations. However, AOP relates only peripherally to this paper,
where our chief concern is the design of meta-level APIs.

7. CONCLUSIONS
We have presented three design principles for meta-level
facilities in object oriented programming languages:

1. Encapsulation. Meta-level facilities must encapsulate
their implementation.

2. Stratification. Meta-level facilities must be separated
from base-level functionality

3. Ontological Correspondence. The ontology of meta-
level facilities should correspond to the ontology of the
language they manipulate.

Mirror-based systems substantially embody these principles.
They isolate an object-oriented programming language’s
reflective capabilities into separate intermediary objects called
mirrors that directly correspond to language structures and
make reflective code independent of a particular
implementation.

As a result:

• Mirrors make remote/distributed development easier.

• Mirrors make deployment easier because reflection can be
easily taken out or added, even dynamically.

The design principles behind mirrors may seem obvious, and
yet these principles have not been widely applied to the
reflective APIs of object-oriented programming languages.

Mirrors have been implemented in several different
programming languages. These include class based languages,
both dynamically and statically typed, as well as the prototype
based language Self in which they were originally conceived.
Mirrors have been successfully demonstrated in practice: very
rich IDEs have been built using mirror-based reflection, as
well as production quality debuggers.

The full power of mirror-based systems has yet to be realized.
Systems that fully support metaprogramming of both code and
computation at both the virtual machine and high-level
language levels have yet to be demonstrated. However, the
potential is clear.

Overall, we believe that the advantages of mirror-based
systems greatly outweigh their disadvantages, and that mirror-

based metaprogramming APIs should be the norm in future
object-oriented languages.

8. ACKNOWLEDGMENTS
This work would not be possible without the teams who built the
mirror-based systems described above.

The Self team: Ole Agesen, Lars Bak, Craig Chambers, Bay-Wei
Chang, Urs Hölzle, Elgin Lee, John Maloney, Randy Smith, David
Ungar and Mario Wolczko.

The Strongtalk team: Lars Bak, Gilad Bracha, Steffen Grarup,
Robert Griesemer, David Griswold and Urs Hölzle.

The JDI team: Robert Field, Gordon Hirsch and James McIlroy.

The APT team: Joseph Darcy and Scott Seligman.

The authors are grateful to Christian Plesner Hansen and Kenneth
Russell for productive discussions of these issues, and to Roel
Wuyts, Stephane Ducasse, Mads Torgersen and Sophia Drossopo-
lou and the SLURP group at Imperial College, as well as the anon-
ymous referees, for helpful comments on earlier drafts of this
paper.

9. REFERENCES

[1] Ole Agesen, Stephen N. Freund and John C. Mitchell. Adding
Type Parameterization to the Java Language. In Proceedings of the
ACM Conference on Object-Oriented Programming, Systems Lan-
guages and Applications, October 1997.

[2] Ole Agesen, Jens Palsberg, and Michael I. Schwartzbach. Type
inference of Self: Analysis of objects with dynamic and multiple
inheritance. Software - Practice & Experience, 25(9):975-995,
September 1995.

[3] Gul Agha. Actors: A Model of Concurrent Computing in Dis-
tributed Systems. MIT Press, Cambridge, Massachusetts, 1986.

[4] Annotation Processing Tool Home Page .
http://java.sun.com/j2se/1.5.0/docs/guide/apt/

[5] Lars Bak, Gilad Bracha, Steffen Grarup, Robert Griesemer,
David Griswold and Urs Hölzle. Mixins in Strongtalk. ECOOP
Workshop on Inheritance, June 2002.

[6] Gilad Bracha. The Strongtalk Type System for Smalltalk, Sep-
tember 1996. OOPSLA Workshop on Extending the Smalltalk
Language.

[7] Gilad Bracha and William Cook. Mixin-based Inheritance. In
Proceedings of the Joint ACM Conference on Object-Oriented
Programming, Systems Languages and Applications and the Euro-
pean Conference on Object-Oriented Programming, October
1990.

[8] Gilad Bracha and David Griswold. Strongtalk: Typechecking
Smalltalk in a Production Environment. In Proceedings of the
ACM Conference on Object-Oriented Programming, Systems Lan-
guages and Applications, September 1993.

[9] Gilad Bracha and David Griswold. Extending Smalltalk with
Mixins, September 1996. OOPSLA Workshop on Extending the
Smalltalk Language.

[10] Soren Brandt and Rene Schmidt. Dynamic Reflection for a
Statically Typed Language. Technical Report PB-505. Department
of Computer Science, Aarhus University, June 1986

[11] Brian Cantwell Smith and Jim de Rivieres. Reflection and
Semantics in LISP. In Proceedings of the 11th ACM SIGACT-SIG-
PLAN symposium on Principles of Programming Languages,
1984.

[12] Shigeru Chiba. A Metaobject Protocol for C++. In Proceed-
ings of the ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, October 1995.

[13] Shigeru Chiba. Macro Processing in Object-Oriented Lan-
guages. In Proc. of Technology of Object-Oriented Languages and
Systems (TOOLS Pacific '98), Australia, November, IEEE Press,
1998.

[14] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative
Programming. Addison-Wesley, Reading, Massachusetts, 2000.

[15] Adele Goldberg and David Robson. Smalltalk-80: The Lan-
guage and its Implementation. Addison-Wesley, Reading, Massa-
chusetts, 1983.

[16] James Gosling, Bill Joy, Guy Steele and Gilad Bracha. The
Java Language Specification, Third Edition. Addison-Wesley,
Reading, Massachusetts, 2004.

[17] Javadoc Tool Home Page. http://java.sun.com/j2se/javadoc/.

[18] Gregor Kiczales, Jim des Rivieres and Daniel G. Bobrow. The
Art of the Metaobject Protocol. MIT Press, Cambridge, Massachu-
setts, 1991.

[19] Sheng Liang and Gilad Bracha. Dynamic Class Loading in the
Java Virtual Machine. In Proceedings of the ACM Conference on
Object-Oriented Programming, Systems Languages and Applica-
tions, October 1998.

[20] David. H. Lorenz and John Vlissides. Pluggable Reflection:
Decoupling Meta-Interface and Implementation. In Proceedings of
the International Conference on Software Engineering, May 2003

[21] Ole Lehrmann Madsen. Keynote address. OOPSLA, Novem-
ber 2002.

[22] Ole Lehrmann Madsen, Birger Moller-Pedersen and Kristen
Nygaard. Object-Oriented Programming in the Beta Programming
Language. Addison-Wesley, Reading, Massachusetts, 1993.

[23] Pattie Maes. Concepts and Experiments in Computational
Reflection. In Proceedings of the ACM Conference on Object-Ori-
ented Programming, Systems Languages and Applications, Octo-
ber 1987.

[24] Mjolner Informatics. The Mjolner System: Metaprogramming
System. Available at http://www.mjolner.com/mjolner-sys-
tem/yggdrasil_en.php

[25] Hans-Peter Mössenböck and Christoph Steindl. The Oberon-2
Reflection Model and its Applications. In Proceedings of the Sec-
ond International Conference on Metalevel Architectures and
Reflection, July 1999.

[26] Michael Richmond and James Noble. Reflections on Remote
Reflection. Proceedings of the 24th Australasian conference on
Computer science. Gold Coast, Queensland, Australia, pp.163 -
170, 2001.

[27] Self Programming Language Homepage.
http://research.sun.com/research/self/

[28] Tim Sheard and Simon Peyton Jones. Template Meta-pro-
gramming for Haskell. In Haskell ‘02. October, 2002. SIGPLAN
Notices, 37, No. 12, pp. 60-75.

[29] Sun Microsystems. Java Platform Debugger Architecture.
http://java.sun.com/products/jpda/.

[30] Sun Microsystems. A Metadata Facility for the JavaTM Pro-
gramming Language. http://www.jcp.org/aboutJava/communi-
typrocess/review/jsr175/

[31] Michiaki Tatsubori, Shigeru Chiba, Marc-Olivier Killijian and
Kozo Itano. OpenJava: A Class-Based Macro System for Java. In
Reflection and Software Engineering, LNCS 1826, Springer-Ver-
lag, pp.117-133, 2000.

[32] David Ungar. Annotating Objects for Transport to Other
Worlds. In Proceedings of the ACM Conference on Object-Ori-
ented Programming, Systems Languages and Applications, Octo-
ber 1995.

[33] David Ungar and Randall Smith. SELF: The Power of Sim-
plicity. In Proceedings of the ACM Conference on Object-Oriented
Programming, Systems Languages and Applications, October
1987.

[34] Allen Wirfs-Brock, Juanita Ewing, Harold Williams and Brian
Wilkerson. A Declarative Model for Defining Smalltalk Programs,
October 1996. Invited talk at OOPSLA 96; available at
http://www.smalltalksystems.com/_awss97/index.htm.

[35] Roel Wuyts. Declarative Reasoning about the Structure of
Object-Oriented Systems, Proceedings of TOOLS USA, August
1998.

[36] Roel Wuyts, A Logic Meta - Programming Approach to Sup-
port the Co - Evolution of Object - Oriented Design and Imple-
mentation, Ph.D. thesis, Vrije Universiteit Brussel, 2001.

[37] Roel Wuyts and Stéphane Ducasse, Symbiotic Reflection
between an Object - Oriented and a Logic Programming Lan-
guage, in ECOOP 2001 International workshop on MultiParadigm
Programming with Object - Oriented Languages, 2001.

	Mirrors: Design Principles for Meta-level Facilities of Object-Oriented Programming Languages
	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. INTRODUCTION
	2. ENCAPSULATION
	2.1 Case Study: Distribution
	2.1.1� Java Core Reflection
	2.1.2� Applying Core Reflection to the Class Browser Problem
	2.1.3� JDI
	2.1.4� Scenario Revisited Using JDI

	2.2 Analysis
	2.2.1� Encapsulating Class Identity

	3. STRATIFICATION
	3.1 Case Study: Deployment
	3.1.1� Smalltalk-80
	3.1.2� Strongtalk
	3.1.3� Analysis

	4. ONTOLOGICAL CORRESPONDENCE
	4.1 Temporal Correspondence
	4.1.1� Case Study: Browsing via a Source Database vs. Browsing via Reflection
	4.1.2� Distinguishing Code and Computation in Self: Interchange of Programs and Data

	4.2 Structural Correspondence
	4.2.1� Reifying Both Code and Computation
	4.2.2� Mirroring Method Bodies
	4.2.3� Which Language to Reflect?

	5. ISSUES IN THE DESIGN OF MIRROR- BASED SYSTEMS
	5.1 Classes vs. Prototypes
	5.1.1� Self

	5.2 The Role of Types
	5.3 Designing Languages in tandem with Reflection
	5.4 Metadata
	5.5 Disadvantages of Mirrors
	5.6 Future Work: The Ultimate Mirror System

	6. Related Work
	6.1 Pluggable Reflection
	6.2 Declarative Metaprogramming
	6.3 Lisp
	6.4 Compile-time MOPs
	6.5 APT
	6.6 C#/.Net
	6.7 Beta
	6.8 Oberon
	6.9 Firewall
	6.10 Aspect-Oriented Programming

	7. CONCLUSIONS
	8. ACKNOWLEDGMENTS
	9. REFERENCES

